Chapter 8

PID Controller for Process
Control

PID (proportional-integral-derivative) controller is the most widely used
controller in industry [1]. PID controller has three tunable control pa-
rameters Kp: proportional gian, Kj: integral gain, and Kp: derivative
gain. These three parameters can be conveniently tuned for many indus-
trial control systems, even without knowledge of the plant model [12]. PID
controller calculates the weighted sum of the instantaneous error E(s) =
R(s) —Y(s) = L{e(t)}, error rate sE(s) = L{deT(ttl}, and accumulated error
1E(s) = L{[e(t)dt}, using respective gains K, Kq, K;, and use this sum-
mation as the control input to the actuator. The control input up;p(t) of a
PID controller is as follows.

Upin(s) = Kpels) + K12 is) + KpsE(s) (8.1)

PID controller is alternatively presented as follows

Upin(s) = Kp {E(s) + %@ + TdsE(s)} (8.2)

where T; = Ilg—’;, and Ty = % are the time constants of the integrator and

differentiator. A plant controlled by a PID controller is shown in Fig.8.1.

8.1 Proportional Controller

The proportional controller commands the actuator to respond to the in-
stantaneous error e(t) = r(t) — y(t). It exerts a positive command when
r(t) > y(t), a negative command when r(t) < y(¢), and a zero command
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Figure 8.1: A plant controlled by a PID controller

when r(t) = y(t). P-control action is proportional to the error with the
constant of proportionality Kp. If Kp is too high the P-controller is very
sensitive and it aggressively responds even for very small errors. On the other
hand, if Kp is very small P-controller is very inactive, and only responds for
larger errors. Both these behaviors are unacceptable, and it is necessary to
adjust Kp to an appropriate strength so that P-controller responds properly
to the error. The P-controller is primarily responsible for the responsiveness
of the PID controller.

8.2 Integral Controller

The integral controller keeps accumulating the error, and generates a con-
trol action proportional to the value of accumulated error at any moment.
Therefore, even when there is no error y(t) = r(t) at time ¢, the integral
controller produces a control action if the net accumulated error at time ¢
is not zero. If the net accumulated error when e(t) = 0 is positive, the in-
tegral command will drive the response to overshoot. On the other hand, if
the net accumulated error is negative, it causes the response to undershoot.
Both these behaviors are apparently unsatisfactory because it reduces the
stability of the control system. However, I-controller is required to eliminate
steady state error in presence of persistent disturbances shown in Fig. 8.2.
In order to maintain stability, I-controller is restricted error accumulation
only within predefine limits, which is called the anti-windup protection of
the I-controller.

Lets assume that e(t) = y(t) —r(t) = 0 at time ¢. Then, up(t) = Kpe(t) =0,
and u(t) = up(t) + d = d. This nonzero control action will deflect the plant
away from the desired state y(t) = r(t). Therefore, the plant will not stabilize
at zero error with P-controller alone in view of a persistent disturbance. The
response deflects till the stable condition u(t) = up(t) + d = 0 is reached
with some error. This error at stable response is e(t) = —d/Kp. In order
to drive the response back to the reference value, an I-controller can be
introduced as shown in Fig.8.3. Under PI control, response will stabilize
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Figure 8.2: A disturbance in a control system controlled by a P controller

when up(t)+us(t)+d = Kye(t)+ Ky [ e(t)dt+d = 0, in which case e(t) =0
and [e(t)dt = —d. Therefore, zero steady state error can be achieved with
the I-controller, which accumulated a finite error and counter the action of
the disturbance.

Pl controller

Figure 8.3: A disturbance in a control system controlled by a PI controller

8.2.1 Example

Figure 8.4 shows a P-controller in a robot arm position control system. The
P-controller generates the torque command wu,(t) = Kpe(t) for the motor,
which adjusts the arm position 0(t).
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Figure 8.4: P-controller for robot arm position control
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The weight of the arm creates a clockwise (-ve) torque, and this torque acts
as a disturbance d(6(t)) as shown in Fig.8.4. Lets assume K, = 25, M = 3kg,
L = 1m, g = 9.8ms ™2, and reference position 0, = 1rad. When the arm is
at position 0(t), net torque on the shaft to turn the arm is up(t) + d(6(t)),
where up(t) = Kp(0, —0(t)), and d(0(t)) = —MgL cos(6(t)). When the arm
stabilizes at some position #,, the net torque on the shaft is zero as follows.

K, (0, —0s) — MgLcosf, = 0
Mgl cos b, B

0, 6, = 0
+ K,
3x 9.8 x 1cosh
‘95 - -1 =0
* 25
0s+0.85c080;,—1 = 0 (8.3)

The numerical solution of (8.3) is 8; = 0.15rad. Therefore, the arm stabilizes
leaving a steady state error of 1 —0.15 = 0.85rad=48.9°. In this position, the
clockwise torque due to the weight of the arm is countered by the proportional
controller by exerting an equal and opposite (anticlockwise) torque, for which
it needs this error of 48.9°.

In order to stabilize the arm with zero steady state error an I-controller can
be introduced to work together with the existing P-controller. However, I-
controller should be carefully introduced and used intermittently during the
control period as otherwise it could potentially reduces relative stability of
the system. Generally, due to error accumulation, I-controller is enabled
intermittently during certain parts of the response. Lets assume that the
control system is turned on at { = 0 with a step reference input, while
the response remains at zero. If the integral controller is also turned on at
t =0, it will start accumulating a +ve error (e(t) = r(t) — y(t) > 0) till the
response reaches the reference input.At this state, the integrator will have
been charged with a huge accumulated error. This accumulated error will
continue to drive the response causing a substantial overshoot (y(t) > r(t)).
Therefore, I-controller should be used carefully.

8.3 Derivative Controller

Derivative controller generates a control command proportional to the rate of
change of error é(t) = 7(t)—y(t) at any moment. Assuming that the reference
is held constant, i.e. 7(t) = 0 the D-control command is up(t) = —Kpy(t),
which is a command against the motion. Therefore, the D-controller acts
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against the motion, similar to the damper behavior in the mass-spring-
damper system described earlier. The D-control action is dominant when
the response undergoes rapid or sudden changes, which shows that the D-
controller improves stability of the control system. At steady state, when
the response stabilizes, the D-controller ceases to exert any control effort.

8.4 Tuning PID Controller

Tunning PID controller is the process of determining the proper match be-
tween the gains Kp, K7, Kp of the controller. As shown above, K p makes the
system responsive to errors, however, a bigger value of Kp will make the sys-
tem too sensitive, and responsive to even noise in the control loop. K reduces
the steady state error, however, it increases overshoot and reduces stability.
Kp, stabilize the system, and in the same time it slows down the response.
In order to realize desirable response the three individual controllers have
to be properly adjusted [1],[10]. There are three main techniques for gain
tuning of PID controllers namely, Zeigler-Nichols, Cohen-Coon, and ITAE
based methods. A performance comparision of these methods are available
in [16]

8.4.1 Ziegler-Nichols Method

Ziegler-Nichols method of PID tuning [18] is a historical work by Zeigler and
Nichols, and it is well known even today. This method assumes that the plant
is of the form Ke’*/(s+ a), and the controller gains are tuned heuristically.
This method can be implemented in two ways. If the frequency response of
the plant is known and it shows that there is a crossover frequency f, as
shown in Fig.8.5.

If frequency response of the plant is not known, a P-controller is intro-
duced to control the plant while the response is monitored as Kp increases.
When the response shows stable oscillations the value of the proportional
gain is equalto the gain margin GM and the frequency of oscillation is the
crossover frequency. FKither by way of frequency response or by this P-
controller test it is possible to obtain the gain margin GM and crossover
frequency f.. The crossover period T,, = 1/f.,. With GM and T, PID
controller gains can be determined using Table 8.1 [18].

According to the Table 8.1, Kp is weaken when controller configuration
changes from P to PI. This way, system bandwidth is slightly reduced to
maintain a healthy gain margin while I-control action reduces phase margin.
Without this modification, I-controller could reduce more of the stability
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Figure 8.5: Frequency response of a plant with a crossover frequency and
gain margin

margin. However, when D-controller is also introduced, the additional phase
lead of the D-controller allows to increase the bandwidth again. This gain
tunning method is a heuristic method of tuning the controller to achieve
a 30" phase margin and a gain margin of 2. This method is not useful in
designing a PD controller as it will over-damp the response and that is why
it is not included in the Table 8.1. This method is not applicable if the plant
is stable for all frequencies in which case there is no crossover frequency. The
Ziegler-Nichols method provides few different controller settings as shown in
the Table above, and each controller can be tested to verify which one is
most appropriate for a given plant. Sometimes, Zeigler-Nichols method may
not be able to tune PID controller for some planst at all [10].

8.5 Cohen-Coon Method

A decade after Zeigler and Nochols, another PID tuning method was pro-
posed by G. H. Cohen and G. A. Coon [5]. This method is also based on
a delayed first order rise, and the method tunes the PID gains to achieve
quarter-amplitude damping, i.e. each peak in the transient is one quarter
of the immediate preceding peak. The open loop plant is assumed to be
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controller Kp K Kp T )
P 0.5G M - - _ _
PI 0.45GM | 1252 - 0.87,, -
PID 0.6GM | 282 1 0.125 KpT,, | 0.5 To, | 0.125 T,
Pessen | 0.7GM | 2542 | 0.15 KpTo, | 04T, | 0.15 T,
WOs 0.33GM | 25E | 0.33 KpT.o | 0.5 T, | 0.33 T,
woos | 0.2GM | 282 | 0.33 KpT,, | 05Ty, | 0.33 T,

Table 8.1: Ziegler-Nichols method, Pessen Integral rule, with and without
overshoot tunning of PID controller

Ke™5 /(s + 1), which leads to unit step response K[l — e+~ where
T4 is the apparent dead time, 7 is apparent time constant, and K is the DC
gain as shown in Fig.8.6. If the unit step response of the open loop plant is
available, then, K, 75 and 7 can be determined. These three parameters are
used to tune PID gains as shown in Table 8.2.

8.6 Integral-based Method

Minimization of error integral with respect to controller gains is employed in
this method [2], where the Integral of Time-weighted Absolute Error (ITAE)
[ tle(t)|dt, is the basis for optimally determininig the PID gains as follows.

1
Kp == ?F
1 1
PR — _I‘
TI Ta
TD = Tar (8.4)

where K is the DC gain shown in Fig.8.6, and I' = o4 (%‘i)@ is calculated
for a given controller type (PI, PD, PID etc.) referring the Table 8.3 and
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Figure 8.6: Experimental unit step response of a plant

controller Kp Ty Th
P ool + 3 - -
PL | i + i} | mlGimen} | -
PD DCTGTd {% + & - Ta{ 262;2373(1//: }
PID | prA3+ %) |l Bt} | mul syt

Table 8.2: Cohen-Coon PID gain tuning table

step response attributes 7, and 7,.

8.7 Example

A plant shows an apparent dead time 7, = 0.6s, and apparent time constant
7 = 2s, and a DC gain K = 0.7. Using Cohen-Coon PID tunning method
in Table. 8.2 PID gains are calculated as Kpl = 6.71, T@1 = 1.32, and
Kdl = 0.21. Similarly, the ITAE PID gains are calculated using Table.8.3
as Kp2 = 4.24, Ti2 = 2.05, and Kd2 = 0.16. The following MatLab code
will simulate this plant under the control of Cohen-Coon and ITAE PID
controller. The plant is modelled as a Simulink block, and it is run from the
MatLab code. The Simulink model of the open loop plant Gi(s), Cohen-Coon
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controller I'p Iy I'p
01,02 01,02 01,02
P | 0.490,-1.084 - -

PI | 0.859,-0.977 | 0.674, -0.680 -

PID | 1.357,-0.947 | 0.842, -0.738 | 0.381,0.995

Table 8.3: ITAE based PID gain tuning table

PID controller, and ITAE PID controller are shown in Fig.8.7(a), whereas
Fig.8.7(b) shows the unit step response under Cohen-Coon and ITAE PID
controllers.

% PID Tuning
DCG=0.7; tau=2; taud=0.6; % OL plant response

% Cohen-Coon PID

Kpl=(tau/(DCG*taud)) * ( 4/3 + taud/(4*tau))
Til=taud*((32+6xtaud/tau)/(13+8*taud/tau))
Tdi=taud*(4/(11+2*taud/tau))

% ITAE PID

spl=1.357; sp2=-0.947;
811=0.842; si2=-0.738;
8d1=0.381; sd2=0.995;
r=tauad/taua;

Kp2=spl*r~sp2
Ti2=sil*r~si2
Td2=sd1*r~sd2

sim pidsim; % calls simulink block

plot(tout,y,’r-.’,tout,yl,’b--",tout,y2,’k’); % step response
xlabel(’time[s]’); ylabel(’y(t), y1(t), and y2(t)’); grid on;
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Figure 8.7: (a)MatLab Simulink block of the open loop plant, Cohen-Coon
PID controller, and ITAE PID controller, (b) step response of the open loop
plant, Cohen-Coon PID, and ITAE PID
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8.8 Summary

A PID controller can be quite easily designed and employed for industrial
plant control even without any knowledge about plant model and behavior.
PID controller tuning methods such as Zeigler-Nochols, Cohen-coon, and
Integral-based (such as ITAE) are widely used in industrial plant control.
These methods try to minimize oscillations by way of adjusting the three pa-
rameters Kp, Ty, and T of the PID controller. Zeigler-Nicholas method can
be used if the open loop response show sustained oscillations for some gain,
whereas Cohen-coon and Integral-based methods can be used if the open
loop response shows a delayed first order rise. These methods of tunning
PID gains generally provide satisfactory performance, however, the best per-
formance for a given plant might not be directly achieved by these methods.
In such situations, more interactive tunning is required.



